Course Content and Objectives

- The goal of this course is to prepare you for, or remind you of, the mathematical underpinnings of economic theory courses–Econ 606, 607, 608 and 609. To that end, we will seek to translate undergraduate economic theory topics into the language of mathematics, taking considerable care to develop the necessary mathematical framework and adding a few bells and whistles in the process. In addition, several increasingly important topics in economic theory are inherently mathematical–notably dynamic optimization models that form the basis of macroeconomic growth theory, natural resources exploitation models and other “dynamic” topics. We will cover both the mathematics and economics of these subjects, though only briefly.
- Ideally, we would cover each topic in this course just in time for the theory courses to use that topic. Inevitably, we will miss the timing on at least some topics. If the theory courses arrive at some topic that requires mathematics we have not yet covered in this course, you will nonetheless be expected to read mathematical appendices or other textbooks for that course to obtain at least an intuitive feel for the mathematics. Of course, you are also welcome to request adjustments in our schedule, and I will try to accommodate.

Prerequisites
MATH 203, MATH 215, MATH 241, MATH 251A or equivalent. Familiarity with the topics covered in the summer math cram course (offered by the Department of Economics).

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Sets</td>
<td>30%</td>
</tr>
<tr>
<td>In-class quiz (September 11)</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm</td>
<td>30%</td>
</tr>
<tr>
<td>Final Exam (December 11)</td>
<td>30%</td>
</tr>
</tbody>
</table>

There will be periodic problem sets. The problem sets will be mostly analytical but may also include some numerical problems. The latter type may involve the use of Excel or Matlab on the
computer. I encourage you to work together on problem sets but each of you will hand in your own assignment.

Textbooks
There are two books that we will reference fairly extensively in the course:

Other references
Calculus and its applications to economics

Dynamic programming

Optimal control theory

Analysis

Numerical methods
Topics covered

1. Preliminaries
Elements of set theory, logic, and proof

*SB Appendix A1
Sundaram Appendices A and B

Properties of Euclidean space and metric space

Sequence, convergence and limits, Cauchy sequence, vector space, norm, metric space, complete metric space, Banach space

*SB Ch 10 and 12.1, 12.2
*SLP Ch 3.1
Sundaram, Ch 1.1 and 1.2
Sundaram, Appendix C

Topology of Euclidean spaces

Open, closed, bounded, compact sets
*SB Ch 12.3-12.6, Ch 29.

2. Multivariate calculus
Functions: basic concepts
Basic terminology of functions, continuity, monotonicity, partial and total derivatives, chain rule, higher order derivatives

*SB Ch 13, 14.1-14.9
Sundaram, Ch 1.4

Functions: applications
Intermediate and mean value theorems, Taylor’s Theorem, inverse and implicit function theorem
*SB Ch 15, 30
Sundaram, Ch 1.5 and 1.6

Existence of solutions to optimization
Weierstrass Theorem
*SB Ch 30.1
Sundaram, Ch 3

3. Static optimization
Unconstrained optimization
Quadratic forms, first order necessary conditions, second order sufficient conditions
*SB 16.1, 16.2, 17
Sundaram, Ch 4
Constrained optimization
Lagrangian method, first order necessary conditions, second order sufficient conditions, equality and inequality constraints, Kuhn-Tucker Theorem, interpretation of Lagrangian multipliers, envelope theorems, concave and quasiconcave functions, concave programming
 Sundaram, Ch 5, 6, 7, 8

Economic applications of static optimization
Utility maximization and expenditure minimization, Roy’s identity, Shephard’s lemma, Slutsky matrix
 *SB Ch 22

4. Dynamic optimization
Difference and differential equations
 *Difference equation: SB 23.1, 23.2

Dynamic optimization: Calculus of variations, optimal control theory
 The Calculus of Variations: Chiang Ch 2, 3, 6
 The Hamiltonian Function: Chiang Ch. 7
 More on Optimal Control: Chiang Ch 8
 Infinite-Horizon Problems: Chiang Ch 5, 9

5. Other possible topics
Parametric continuity, the Maximum Theorem, Fixed Point Theorem
 Sundaram, Ch 9

Exam schedule
An in-class quiz is scheduled on Sep. 11 (Tuesday), followed by a TA session on Sep. 13 (Thursday). The midterm exam is scheduled after the section on static optimization. The final exam is scheduled at 12:00-2:00 pm on Dec. 11 (Tuesday).

Disability Access
If you feel you need reasonable accommodations because of the impact of a disability, please: (1) contact the KOKUA Program (V/T) at 956-7511 or 956-7612 in room 013 of the QLCSS (Queen Lili’uokalani DCenter for Student Services); (2) speak with me privately to discuss your specific needs. I will be happy to work with you and the KOKUA Program to meet access needs related to a documented disability.
Mathematics for Economists, a new text for advanced undergraduate and beginning graduate students in economics, is a thoroughly modern treatment of the mathematics that underlies economic theory. An abundance of applications to current economic analysis, illustrative diagrams, thought-provoking exercises, careful proofs, and a flexible organization—these are the advantages that Mathematics for Economists brings to today’s classroom. Categories: Mathematics. II. Title. HB135.B59 1 9 9 4 510â€™.24339-dc20 93-24962. ISBN 0-393-95733-O. W. W. Norton & Company, Inc., 500 Fifth Avenue, New York, N.Y. 10110 W. W. Norton & Company Ltd., 10 Coptic Street, London WC1A 7 8 9 0. > ECON1008 Mathematics for Economics. Module Overview. This module provides a bridge between A-level mathematics and university mathematics. It provides a good grounding and an in depth understanding of the theory and application of differential calculus, and other techniques widely used in Economics and Finance. It is aimed at students who hold an A level in Mathematics at Grade B or above. Topics of study include functions, univariate optimisation, elasticity, financial mathematics, multivariate optimisation, constrained optimization, matrices, integration, difference and differential equations. Eighth Edition Mathematics for Economics and Business is the ideal text for any student taking a course in economics, business, or management. IAN JACQUES was formerly a senior lecturer at Coventry University. He has considerable experience teaching mathematical methods to students studying economics, business, and accounting. 2. Has an access card been included with the book? Check the inside back cover. 3. If you do not have an access card, you can buy access from www.mymathlabglobal.com. www.pearson-books.com CVR_JACQ4238_08_SE_CVR.indd 1 18/06/2015 10:41 MATHEMATICS FOR ECONOMICS AND BUSINESS A01_JACQ4238_08_SE_FM1.indd i 6/17/15 11:09 AM. 67 204 Mathematics for Business Analysis I Fall 2007 Instructor Asâ€™ayake Office: Swart 223 Office Hours: Monday 12:40-1:40 Wednesday 8:00-9:00 Thursday 9:10-11:20 If you cannot make my office hours, More information. COURSE SYLLABUS MAC1105 College Algebra. Online College Algebra Madison Area Technical College Fall 2013 Syllabus Course Information Catalog Number: 20-804-212 Class Number: 33518 Dates: 8/26/2013-10/18/2013 Credits: 3 Website: http://blackboard.madisoncollege.edu. More information. University of South Florida Sarasota-Manatee Course Syllabus Forensic Accounting and Fraud Examination ACG 4931 Fall 2015.