Copyright 2010 American Water Works Association

American Water Works Association is the authoritative resource for knowledge, information and advocacy to improve the quality and supply of water in North America and beyond. AWWA is the largest organization of water professionals in the world. AWWA advances public health, safety and welfare by uniting the efforts of the full spectrum of the entire water community. Through our collective strength we become better stewards of water for the greatest good of the people and the environment.

American Water Works Association
6666 W. Quincy Ave.
Denver, Colorado 80235
www.awwa.org

AWWA Director of Publishing: Monica Joda Baruth
AWWA Publications Manager: Gay Porter De Nileon

Cover photo: Modesto Regional Water Treatment Plant (Modesto, CA). Photo courtesy of Black & Veatch Corporation
TABLE OF CONTENTS

Preface

Acknowledgments

Chapter 1: Drinking Water Standards, Regulations, and Goals

J. Alan Roberson, P.E., and Eric G. Burneson, P.E.

- Regulatory History Prior to the 1974 SDWA
- The Evolution of the SDWA
- The Risk Management and Standard Setting Processes
- The Current Drinking Water Regulations
- The Role of the State Agencies
- Peer Review, Outside Consultation, and Public Involvement
- Other Countries and International Standards
- The Outlook for the Future

Chapter 2: Health and Aesthetic Aspects of Drinking Water

Gloria B. Post, Ph.D., D.A.B.T.; Thomas B. Atherholt, Ph.D.; and Perry D. Cohn, Ph.D., M.P.H.

- Waterborne Disease
- Pathogenic Organisms
- Indicators of Water Quality
- Toxicological Evaluation of Drinking Water Contaminants
- Risk Assessment of Drinking Water Contaminants
- Inorganic Constituents
- Organic Constituents
- Disinfectants and Disinfection By-products
 - Radionuclides
- Aesthetic Quality
- Preparedness and Health
- Final Comment
- Internet Resources

Chapter 3: Chemical Principles, Source Water Composition, and Watershed Protection

- Introduction
- Chemical Principles and Concepts
- Source Water Composition
- Particles
- Natural Organic Matter (NOM)
- Source Water Selection and Protection
Chapter 4: Hydraulic Characteristics of Water Treatment Reactors and Their Effects on Treatment Efficiency 4-1
Desmond F. Lawler, Ph.D., P.E.

Introduction
Continuous Flow Reactors: Ideal and Non-Ideal Flow
Tracer Studies
Mathematical Models for Non-Ideal Flow
Computational Fluid Dynamics
Reaction Rate Expressions
Reactions in Continuous Flow Systems at Steady State: Combining Hydraulics and Reaction Kinetics
Reactors in Water Treatment and their Hydraulic Characteristics
Summary

Chapter 5: Overview of Water Treatment Processes 5-1
Doug Elder, P.E., and George C. Budd, Ph.D., P.E.

Introduction
Source Water Quality Considerations
Characteristics and General Capabilities of Unit Processes
Distribution System Considerations
Treatment Process Residuals Management
Other Considerations

Chapter 6: Gas-Liquid Processes: Principles and Applications 6-1
David W. Hand, Ph.D.; David R. Hokanson, M.S., P.E.; and John C. Crittenden, Ph.D., P.E., D.E.E., N.A.E.

Introduction
Theory of Gas Transfer
Packed Towers
Diffused or Bubble Aeration
Surface Aeration
Spay Aerators

Chapter 7: Chemical Oxidation 7-1
Philip C. Singer, Ph.D., P.E., B.C.E.E., and David A. Reckhow, Ph.D.

Introduction
Principles of Oxidation
Oxidants used in Water Treatment
Applications of Oxidation Processes to Water Treatment Processes
Chapter 8: Coagulation and Flocculation 8-1
Raymond D. Letterman, Ph.D., P.E., and Sotira Yiacoumi, Ph.D.

Introduction
Contaminants
Stability of Particle Suspensions
Destabilization Mechanisms
Coagulants
The Rapid Mixing and flocculation Processes

Chapter 9: Sedimentation and Flotation 9-1
Ross Gregory, Ph.D., and James K. Edzwald, Ph.D., D.E.E.

Modern History of Sedimentation
Sedimentation Theory
Operational and Design Considerations for Sedimentation
Introduction to Dissolved Air Flotation
Fundamentals of Dissolved Air Flotation
Operational and Design Considerations for Flotation
Applications

Chapter 10: Granular Media Filtration 10-1
Gary S. Logsdon, D.Sc., P.E., B.C.E.E.; and Charles R. O’Melia, Ph.D., P.E.

Overview of Particle Filtration Processes
Granular Media Filtration Process Description
Media Filtration Theory and Modeling
Rapid Rate Filter Performance
Flow Control in Filtration
Backwashing and Maintenance of Filter Media
Direct Filtration
Pressure Granular Bed Filters
Slow Sand Filtration
Precoat Filtration

Chapter 11: Membranes 11-1
Steven J. Duranceau, Ph.D., P.E., and James S. Taylor, Ph.D., P.E.

Size Ranges for Membrane Processes
Classifications and Configurations of Membrane Processes
Membrane Properties and Rejection Characteristics
Mass Transport and Separation
Integrated MF and UF Process Applications and Process Design
NF and RO Process Concepts and Design Criteria
Residuals Disposal and Concentrate Management
Pilot Plant Testing
Regulatory Environment for Membrane Processes

Chapter 12: Ion Exchange and Adsorption of Inorganic Contaminants 12-1
Dennis Clifford, Ph.D., P.E., B.C.E.E.; Thomas J. Sorg, P.E., B.C.E.E.; and
Ganesh L. Ghuyre, Ph.D., P.E., B.C.E.E.

Overview
Introduction and Theory of Ion Exchange
Applications of Ion Exchange and Adsorption
Ion Exchange Modeling Using EMCT
Waste Disposal
Summary

Chapter 13: Precipitation, Coprecipitation, and Precipitative Softening 13-1
Stephen J. Randtke, Ph.D., P.E.

Introduction
Principles
Precipitative Softening
Other Applications

Chapter 14: Adsorption of Organic Compounds by Activated Carbon 14-1
R. Scott Summers, Ph.D., Detlef R.U. Knappe, Ph.D., and Vernon L.
Snoeyink, Ph.D.

Adsorption Overview
Adsorbent Characteristics
Adsorption Theory
Granular Activated Carbon (GAC) Adsorption Systems
Performance of Granular Activated Carbon (GAC) Adsorption Systems
Granular Activated Carbon (GAC) Performance Estimation
Powdered Activated Carbon (PAC) Adsorption
Thermal Reactivation of Granular Activated Carbon (GAC)
Adsorption of Organic Matter by Other Adsorbents

Chapter 15: Natural Treatment Systems 15-1
Saroj K. Sharma, Ph.D., and Gary Amy, Ph.D.

Introduction
River (RBF) and Lake (LBF) Bank Filtration
Artificial Recharge and Recovery (ARR)
Subsurface Groundwater Treatment
Soil Aquifer Treatment (SAT) for Indirect Potable Reuse
Water Quality Improvements in Natural Treatment Systems
Design and Operation of Natural Water Treatment Systems
Selected Case Studies of Natural Water Treatment Systems

Chapter 16: Water Reuse for Drinking Water Augmentation 16-1
Jörg E. Drewes, Ph.D., and Stuart J. Khan, Ph.D.

Introduction to Potable Reuse
Source Water Characteristics
System Reliability and health Risk Considerations
Design of Potable Reuse Schemes
Monitoring Strategies for Process Performance and Compliance
Regulations and Guidelines for Drinking Water Augmentation
Public Perception to Indirect Potable Reuse

Chapter 17: Chemical Disinfection 17-1
Charles N. Haas, Ph.D.

Introduction
History of Disinfection
Regulatory Issues for Disinfection
Disinfectants and Theory of Disinfection
Assessment of Microbial Quality (Indicators)
Pathogens of Concern
Disinfection Kinetics
Mode of Action of Disinfectants
Disinfectant Residuals for Post-Treatment Protection
Design and Application of Technologies
Relative Comparisons

Chapter 18: Ultraviolet Light Processes 18-1
Karl G. Linden, Ph.D., and Eric J. Rosenfeldt, Ph.D.

Introduction to Ultraviolet Light Processes
Fundamentals of UV Light
UV Disinfection
UV Photolysis
UV Advanced Oxidation Processes (AOPs)

Chapter 19: Formation and Control of Disinfection By-Products 19-1
David. A. Reckhow, Ph.D. and Philip C. Singer, Ph.D.

Introduction
Formation of Disinfection (and Oxidation) By-Products
Control of Oxidation/Disinfection By-Products
Disinfection By-products in the Distribution System
Chapter 20: Internal Corrosion and Deposition Control
Michael R. Schock and Darren A. Lytle

Introduction
Corrosion, Passivation, and Immunity
Physical Factors Affecting Corrosion and Metals Release
Chemical Factors Affecting Corrosion
Corrosion of Specific Metals
Direct Methods for the Assessment of Corrosion
Corrosion Control Alternatives
Water Sampling for Corrosion Control

Chapter 21: Microbiological Quality Control in Distribution Systems
Mark W. LeChevallier, Ph.D.; Marie-Claude Besner, Ph.D.; Melinda Friedman, P.E., and Vanessa L. Speight, Ph.D., P.E.

Microbial Risks from Distribution System Contamination
Microbes in Distribution Systems
Factors Contributing to Microbial Occurrences in Distribution Systems
Monitoring Distribution Systems
Engineering and Design of Distribution Systems
Controlling Microbial Occurrences in Distribution Systems
Final Remarks

Chapter 22: Water Treatment Plant Residuals Management
David A. Cornwell, Ph.D., P.E., and Damon K. Roth, P.E.

Introduction
Thickening
Non-mechanical Dewatering
Mechanical Dewatering
Spent Filter Backwash Treatment
Recycle
Membrane Residuals
Ion Exchange and Inorganic Adsorption Process Residuals
Residuals Containing Arsenic
Residuals Containing Radioactivity
Ultimate Disposal and Utilization of Solids

Appendices
A Atomic Numbers and Masses
B Physical and Chemical Constants
C Conversion Factors
D Properties of Water and Gases

Index
PREFACE

This 6th edition of Water Quality and Treatment: A Handbook on Drinking Water serves as a handbook for scientists, engineers, and other professionals who study and work in drinking water; particularly, the quality of water supplies, the quality of treated drinking water, and water treatment processes. It is meant as a resource for those in academics (professors and students); consulting engineering practice; water utilities; federal and state regulatory agencies; and the water process and chemical industries. The book emphasizes principles (theory) and applications (practice). It serves as a companion to the book on design, AWWA–ASCE Water Treatment Plant Design; the 5th edition is in preparation with expected publication in late 2011.

This book is an activity of AWWA’s Water Quality and Technology Division (WQTD). James K. Edzwald served as the technical editor and worked with the authors of the chapters in preparing the book. An ad hoc committee of the WQTD consisting of James P. Malley, Jr., Marilyn M. Marshall, and Dixie Fanning provided advice to the technical editor throughout the preparation of the book.

Water Quality and Treatment, 6th edition, differs greatly from the 5th edition published in 1999; it contains significant revisions, updating of material, and new chapters. Five new chapters expand the scope of this book: Chapter 4, Hydraulic Characteristics of Water Treatment Reactors and Their Effects on Treatment Efficiency; Chapter 15, Natural Treatment Systems; Chapter 16, Water Reuse for Drinking Water Augmentation; Chapter 18 UV Light Processes; and Chapter 19, Formation and Control of Disinfection Byproducts. A sixth chapter, Chapter 3, Chemical Principles, Source Water Composition, and Watershed Protection, replaces one from the 5th edition on source water quality management, and it is essentially another new chapter in that it contains new material on chemical principles and additional material on source water quality.

Since publication of the 5th edition in 1999, the drinking water field has faced new regulations and concerns about the health effects of some new and previously known contaminants. Furthermore, in the last 10 years we have seen the development of new technologies and refinements of older technologies that are now covered in this edition. The 6th edition covers the health effects and treatment technologies to remove some contaminants not covered previously such as nanoparticles, endocrine-disrupting compounds, and pathogens; it contains updated material on many other contaminants such as disinfection by-products, arsenic, and pathogens including viruses and protozoan cysts such as Cryptosporidium; and it addresses
subjects not adequately covered in the prior edition, such as water reuse, ultraviolet light processes, and natural treatment systems.

Several other new features are notable in this 6th edition. The International System of Units (SI) is used with U.S. units in parenthesis where appropriate. This makes the book useful to professionals outside the United States and to those within the United States working on water projects around the world. Each chapter has its own table of contents to aid readers in finding subject matter within chapters. Four new appendices provide quick references for atomic numbers and masses, physical and chemical constants, unit conversion factors, and the physical properties of water.

The book is organized beginning with five supporting chapters that contain material on drinking water standards and regulations (chapter 1), health effects (chapter 2), chemical principles, source water composition, and watershed protection (chapter 3), hydraulics of treatment processes (chapter 4), and an overview of water treatment processes (chapter 5). This is followed by coverage of various water treatment processes in chapters 6 through 14 that present principles and applications of the removal of various contaminants from water supplies. Chapter 15 covers natural treatment systems such as river bank filtration, and chapter 16 deals with water reuse. Chapters 17 and 18 follow with disinfection and UV light processes including disinfection and advanced oxidation processes. Chapters 19, 20, and 21 cover disinfection byproducts, corrosion, and microbiological quality in distribution systems, respectively. Chapter 22 ends the book with the properties, treatment, and management of water treatment residuals.

James K. Edzwald
Technical Editor
Professor Emeritus, University of Massachusetts

James P. Malley, Jr.
Chairman of the Board of Trustees, AWWA Water Quality and Technology Division
Professor, University of New Hampshire
ACKNOWLEDGMENTS

The 6th edition of *Water Quality and Treatment: A Handbook on Drinking Water*, is a valuable resource for the drinking water field that is made possible through the efforts of many people. First and foremost, the quality of the book is due to the efforts of the 45 authors who prepared the 22 chapters in the book.

The revision of the book began with an assessment of the 5th edition. Several professionals from water utilities, consulting engineering firms, and academics were asked to review the 5th edition and to make recommendations for new material for inclusion in the 6th edition. I wish to thank the following: William C. Becker (Hazen and Sawyer), William D. Bellamy (CH2M Hill), Steve Bishop (Metcalf and Eddy), Howard Dunn (Vice President of Operations and Technology, Aquarion Water Company of CT), Harold T. Glaser (Kennedy Jenks), Raymond D. Letterman, (Syracuse University and Technical Editor of the 5th edition), Michael J. MacPhee (Malcolm Pirnie), Charles R. O’Melia (Johns Hopkins University), Vernon L. Snoeyink (University of Illinois), and John P. Walsh (formerly, Director of Operations and Distribution, Aquarion Water Company of CT, now with Tighe and Bond).

This book project was initiated by James P. Malley, Jr., Marilyn, M. Marshall, and Dixie Fanning, members of the ad hoc committee representing the Water Quality and Technology Division of AWWA. Their advice was invaluable and I thank them. I am particularly indebted to Jim Malley for his leadership. He was also always there for me to give advice and help me over the hurdles. Finally, I thank the staff with AWWA Publications and with McGraw Hill for their work in producing the book. A special thanks to Gay Porter De Nileon, AWWA Publications
Manager, who provided essential support from AWWA; without her assistance the book could not have been completed.

James K. Edzwald
Technical Editor
Professor Emeritus, University of Massachusetts

Water quality assessment is important for the duration of mining and infrastructure projects, from scoping and feasibility stages to mine closure. Our teams of specialists are experienced in a wide range of mining and process scenarios, including varied climatic and regulatory environments. We advise clients on mine and potable water supply, process water quality, environmental and social impact assessment, mine geochemistry and acid rock drainage (ARD), and water treatment. Our approach is pragmatic, thorough, and focused on solving even intractable water quality issues. Services. Potable wat... Only RUB 220.84/month.

Water Quality and Water Treatment. STUDY. Flashcards.

Coagulation Treatment. When alum is added to water, it reacts with the water and results in positively charged ions. Coagulation is a process used to remove turbidity, color, and some bacteria from water. Settling basin. Water and the flocs sink to the bottom of the settling basin. Secondary filtration. designed to further reduce the B.O.D. of the organic material. It makes use of devices that agitate and aerate the sewage in order to promote the activity of naturally occurring aerobic decomposing bacteria. Chorlination. the process of adding chlorine to drinking water to disinfect it and kill Drinking-water quality regulation. Small water supply management. Household water treatment and safe storage. Recreational waters. Publications. WHO produces international norms on water quality and human health in the form of guidelines that are used as the basis for regulation and standard setting world-wide. The Guidelines for drinking-water quality (GDWQ) promote the protection of public health by advocating for the development of locally relevant standards and regulations (health based targets), adoption of preventive risk management approaches covering catchment to consumer (Water Safety Water treatment systems make a difference Spa-Like Showers and Baths. You may never want to get out of the shower...Â Softer & Brighter Clothes. A quality SoftPro or Fleck water softener will make you feel great everyday. GET STARTED. Get Your Free Water Score, Top Brand Comparisons & Custom Sizing Recommendations.