Further Reading: Michael Faraday

General reading
Alan E. Jeffreys, Michael Faraday: A List of His Lectures and Published Writings, (London, 1960).

Published books by Faraday, mainly collections of papers and lecture notes, some published after his death:
Chemical Manipulation, Being Instructions to Students in Chemistry. (1827).
Experimental Researches in Electricity, Vol I, II & III (1837, 1844, 1855)
Experimental Researches in Chemistry and Physics (1859).
W. Crookes. ed. A Course of six lectures on the Various Forces of Matter (1860)
W. Crookes. ed. A Course of six lectures on the Chemical History of a Candle, (1861)
The liquefaction of gases (1896.)

Published texts by Faraday
The complete correspondence of Michael Faraday is currently being compiled. Five volumes have been published with the sixth in progress. Frank A.J.L. James, The Correspondence of Michael Faraday, (London, 1991-2008).

In-depth reading:
Henry Bence Jones, Life and Letters of Faraday, 1st and 2nd editions, 2 volumes, London, 1870


David Gooding, ‘Experiments and concept formation in electromagnetic science and technology in England in the 1820s’, *History and Technology*, 1985, 2: 151-176,


Bruce J. Hunt, The Maxwellians (Ithaca, 1991)


Frank A.J.L. James, ‘the civil-engineer’s talent’: Michael Faraday, science, engineering and the English lighthouse service, 1836-1865’, Transactions of the Newcomen Society, 1999: 70: 153-60


José Romo and Manuel G. Doncel, ‘Faraday’s initial mistake concerning the direction of induced currents, and the manuscript of Series I of his Researches’, Archive for the History of the Exact Sciences, 1994, 47: 291-385.


Ryan Tweney, ‘Toward a Cognitive-Historical Understanding of Michael Faraday’s Research: Editor’s Introduction’, Perspectives on Science 2006, 14: 1-6,

Ryan Tweney, ‘Stopping Time: Faraday and the scientific creation of perceptual order’, Physia, 1992, 29: 149-164,


Michael Faraday, English physicist and chemist whose many experiments contributed greatly to the understanding of electromagnetism. Among his achievements, he was the first to produce an electric current from a magnetic field and invented the first electric motor and dynamo.

Learn about his life and career. 

John Stambaugh Professor of the History of Science; Director, Program in the History and Philosophy of Science and Technology, Cornell University, Ithaca, New York. Author of Michael Faraday. Last Updated: Jan 22, 2021 See Article History. Michael Faraday, (born September 22, 1791, Newington, Surrey, England—died August 25, 1867, Hampton Court, Surrey), English physicist and chemist whose many experiments contributed greatly to the understanding of electromagnetism. Michael Faraday achieved his early renown as a chemist. He made many important contributions to chemistry. In 1820, Faraday produced the first known compounds made from carbon and chlorine, hexachloroethane (C2Cl6) and tetrachloroethene (C2Cl4). Michael Faraday provided evidence for this fact by applying pressure to liquefy chlorine gas and ammonia gas for the first time. These were till then believed to be "permanent gases," or gases incapable of liquefaction. During ammonia liquefaction, Faraday also noted that when he allowed the ammonia to evaporate again, it caused cooling. Michael Faraday FRS (/ˈfærədeɪ, -di/; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic induction, diamagnetism and electrolysis. Although Faraday received little formal education, he was one of the most influential scientists in history. It was by his research on the magnetic field around a conductor carrying a direct current that Faraday established Michael Faraday was the most celebrated British scientist of the 19th century. Know more about his childhood and life with this biography. 

Since the early days, the concept of energy, specifically force, interested Faraday the most. It was due to this early reading and experiments with the idea of force that he was able to make important discoveries in electricity later in life. To know more about this British chemist and physicist, read through the following lines. Recommended Lists: Recommended Lists.