Digital Optics for Immersive Displays

Bernard C. Kress
Wolfgang Osten
Hagen Stolle
Editors

24–25 April 2018
Strasbourg, France

Sponsored by
SPIE

Cosponsored by
Strasbourg the Eurooptimist (France)
CNRS (France)
Investissements d’Avenir (France)
iCube (France)
Université de Strasbourg (France)

Cooperating Organisations
Photonics 21 (Germany)
EOS—European Optical Society (Germany)
Photonics Public Private Partnership (Belgium)
Comité National d’Optique et de Photonique (France)

Published by
SPIE

Volume 10676
Contents

SESSION 1 OPTICAL CHALLENGES FOR NEXT-GENERATION AR/VR HEADSETS

10676 04 Field of view: not just a number [10676-3]

10676 05 Optical design challenges from satellite imaging to augmented reality displays [10676-4]

10676 06 Viewing optics for immersive near-eye displays: pupil swim/size and weight/stray light [10676-5]

SESSION 2 DESIGN, FABRICATION AND TESTING OF NOVEL OPTICS FOR AR/VR SYSTEMS

10676 07 Ultra-compact multichannel freeform optics for 4xWUXGA OLED microdisplays (Invited Paper) [10676-6]

10676 09 Casting technology for embedding optical elements into prescription spectacle lenses [10676-8]

10676 0B Optical metrology for immersive display components and subsystems [10676-10]

10676 0C HMD quality evaluation of projected image: hardware assessment and software evaluation for distortions correction [10676-11]

SESSION 3 HOLOGRAPHIC OPTICS FOR AR/VR SYSTEMS

10676 0D Curved wedges and shearing gratings for augmented reality (Invited Paper) [10676-12]

10676 0E Characterisation and optimisation of Volume Holographic Optical Elements (VHOEs) in AR combiners for ghost reduction [10676-13]

10676 0F Bragg polarization gratings used as switchable elements in AR/VR holographic displays [10676-14]
10676 OG DigiLens switchable Bragg grating waveguide optics for augmented reality applications [10676-15]

10676 OH Wavelength multiplexing recording of vHOEs in Bayfol HX photopolymer film [10676-16]

SESSION 4 IMPROVING VISUAL COMFORT IN AR/VR SYSTEMS

10676 OJ Varifocal technologies providing prescription and VAC mitigation in HMDs using Alvarez lenses (Invited Paper) [10676-18]

10676 OL Computationally efficient and antialiased dual-layer light-field displays [10676-19]

10676 ON Experimental evaluation of self-focusing image formation in unconventional near-eye display [10676-22]

DOID STUDENT OPTICAL DESIGN CHALLENGE FOR VR/AR AND MR: POSTER PRESENTATIONS

10676 OQ Improving image quality of 360-degree viewable holographic display system by applying a speckle reduction technique and a spatial filtering [10676-20]

10676 OS Design of a freeform gradient-index prism for mixed reality head mounted display [10676-101]

10676 OT Optical design, assembly, and characterization of a holographic head mounted display [10676-103]

10676 OU Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters (1st Place, DOID Student Optical Design Challenge) [10676-104]

10676 OV Designing of a monocular see-through smart glass imaging system [10676-105]

10676 OX A reflective prism for augmented reality with large field of view [10676-109]

10676 OY Design of a spatially multiplexed light field display on curved surfaces for VR HMD applications [10676-110]

10676 OZ See-through smart glass with adjustable focus [10676-111]

10676 12 Ultrathin full color visor with large field of view based on multilayered metasurface design (1st Place, DOID Student Optical Design Challenge) [10676-117]

10676 13 A vergence accommodation conflict-free virtual reality wearable headset [10676-119]

10676 14 Ultrathin optical combiner with microstructure mirrors in augmented reality (2nd Place, DOID Student Optical Design Challenge) [10676-120]
Wide field-of-view waveguide displays enabled by polarization-dependent metagratings (1st Place, DOID Student Optical Design Challenge) [10676-121]

Over-designed and under-performing: design and analysis of a freeform prism via careful use of orthogonal surface descriptions [10676-122]

Shape scanning displays: tomographic decomposition of 3D scenes [10676-124]

Polarization-dependent metasurfaces for 2D/3D switchable displays [10676-125]

High-performance integral-imaging-based light field augmented reality display [10676-126]

Design and stray light analysis of a lenslet-array-based see-through light-field near-eye display [10676-127]

High-resolution head mounted display using stacked LCDs and birefringent lens (2nd Place, DOID Student Optical Design Challenge) [10676-128]

A retinal-projection-based near-eye display for virtual reality [10676-129]

Understanding waveguide-based architecture and ways to robust monolithic optical combiner for smart glasses [10676-131]

Compact see-through AR system using buried imaging fiber bundles (2nd Place, DOID Student Optical Design Challenge) [10676-132]

Design of an immersive head mounted display with coaxial catadioptric optics [10676-133]

Ultra-compact pancake optics based on ThinEyes super-resolution technology for virtual reality headsets (3rd Place, DOID Student Optical Design Challenge) [10676-134]

Solving the vergence-accomodation conflict in head mounted displays with a magnifier system [10676-135]

Augmented reality display system for smart glasses with streamlined form factor [10676-139]

High-resolution optical see-through vari-focal-plane head-mounted display using freeform Alvarez lenses (3rd Place, DOID Student Optical Design Challenge) [10676-140]

Super multi-view augmented reality glasses [10676-142]

PARA: experimental device for virtual and augmented reality (3rd Place, DOID Student Optical Design Challenge) [10676-143]
Near-eye display performance is usually summarized with a few simple metrics such as field of view, resolution, brightness, size, and weight, which are derived from the display industry. In practice, near-eye displays often suffer from image artifacts not captured in traditional display metrics. Optical architectures. Optics in smart glasses serve three main purposes: Collimation of light such that the image appears at a greater distance than it's physical distance. Magnification of the display image to make it appear larger than it's actual size. Relaying of light patterns to the viewers eyes. Distortion. There are two primary optical design systems, or architectures for AR and VR displays: pupil forming and non-pupil forming. Fully immersive These are standard fully immersive virtual reality displays. These stereoscopic displays are combined with sensors to track position and orientation. They completely block the user's view of the outside world like in the book Ready Player One. The mechanical feasibility of curved micro-displays will also be discussed, as well as the process to make a curved microdisplay, which is compatible with current mass-production CMOS displays. For OLED technology, the main resistance to curvature is the silicon substrate. The case for GaN technologies shows other mechanical limitations.